EDWARD A. COHEN, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA; DAMIAN M. GOODRIDGE and KENTAROU KAWAGUCHI, Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1305, Japan.

BiO has a $^2\Pi_\tau$ electronic ground state with a fine structure interval of ≈ 7087 cm $^{-1}$ between the X_1 and X_2 states. A recent, far reaching study of the BiO radical by Shestakov, et~al., a has provided spectroscopic constants for a total of nine of its electronic states. The rotational constants calculated for the $X^2\Pi$ state have been used as the basis for a further investigation by microwave spectroscopy at Nobeyama Radio Observatory. BiO was produced in a flow system by heating Bi to 1120 K in a Knudsen cell and reacting the resulting vapor with an approximately 1:1 mixture of O_2 and argon in the presence of a dc discharge. A useful side-effect of this method of production is the population of highly excited vibrational states of BiO. This is presumably due to collisional energy transfer from the metastable $a^1\Delta_g$ electronic state of O_2 . As a result, rotational transitions within vibrationally excited levels up to v < 9 in the X_1 $^2\Pi_{1/2}$ electronic state and v < 5 in the X_2 $^2\Pi_{3/2}$ state have been observed. A sample microwave spectrum of the BiO radical is given in Figure 1, which illustrates the hyperfine pattern that is associated with the presence of the I < 9/2 ^{209}Bi nucleus.

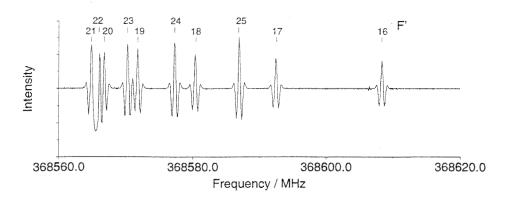


Figure 1: The BiO $X_1^2 \Pi_{1/2}$ ($\nu = 0$) $\Delta F = +1$, J = 41/2 - 39/2 transitions.

Thus far, a total of 575 lines have been assigned and fitted with an RMS of 27 kHz, using an effective Hamiltonian similar to that of Brown *et al.*^b There is excellent agreement between the microwave parameters and those obtained in the optical study. More recently, we have included over 2300 previously assigned transitions of the $X_2 \rightarrow X_1$ 0–0 emission band^c with an RMS of 0.0009 cm⁻¹. In addition, the hyperfine parameters for both the X_1 and X_2 electronic states have been determined. These will be compared to the corresponding parameters of related compounds and to those of the bismuth atom.

[&]quot;O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer and E. H. Fink J. Mol. Spectrosc. 190, 28-77 (1998)

^bJ. M. Brown, E. A. Colbourn, J. K. G. Watson and F. D. Wayne, J. Mol. Spectrosc. 74, 294-318 (1979)

^cE. H. Fink, private communication